[Tisk] [Poslat e-mailem] [Hledat v článcích] Problematika koroze a korozivzdorných materiálů Datum: 19.3.2010Autor: Ing. Martinec Jiří Zdroj: http://www.konstrukce.cz Ve svářečské praxi se velmi často setkáváme se svařováním korozivzdorných ocelí. Řada renomovaných společnosti včetně ESABu pořádá odborné semináře zaměřené na problematiku svařování korozivzdorných ocelí. Přes výše uvedené se stále setkáváme s mnoha nejasnostmi spojených právě s otázkou koroze FotoKorozí jsou nejvíce postihovány rozvody plynu, vody, elektřiny a telekomunikační rozvody. Na celkových škodách se podílejí 34 procenty. Následuje doprava (21,5 %), po ní infrastruktura – mosty (dnes již není výjimkou, že pro armovaný beton se jako výztuha používá korozivzdorná ocel), letiště a dálnice a nakonec výroba, především provozy pro důležité pro ekonomiku a životní úroveň v zemi – rafinerie, petrochemické provozy apod. ![]() Velmi vystižně tento jev popsala formulace Manuela Morcila, ředitele španělského Národního výzkumného ústavu metalurgického: „Tak jako se o člověku říká, prach jsi a v prach se obrátíš, platí o kovech, že oxidy jsou a v oxidy se obrátí“. O některých kovech to platí méně o jiných více. Existuje malá skupina ušlechtilých kovů v čele se zlatem a platinou, které oxidaci nepodléhají nebo jen pomalu [1]. ![]() V případě železa a oceli je rez porézní a podporuje další postup oxidace až do rozložení celého materiálu. U mnoha lehkých a barevných kovů je to trochu jinak. Tvoří se neprostupná oxidační vrstva (například oxid hlinitý u hliníku nebo patina u mědi), které zamezí další korozi. Konkrétní případ oxidace železa dokumentuje obr. 1 [2]. V mnoha prostředích dává pasivita ocelím a slitinám vynikající odolnost proti celkové korozi. Za zvláštních podmínek může však být pasivita místně porušena a potom velká katodová pasivní plocha bude naopak urychlovat korozi malých anodových míst, což se projeví některým z místních druhů koroze – štěrbinovou, bodovou, mezikrystalovou a korozním praskáním. Znalosti o těchto druzích koroze jsou významné při uplatnění korozivzdorných ocelí, zvláště pak austenitických. Austenitické typy ocelí stále patři k nejrozšířenějším typům v konstrukcích a zařízeních různých průmyslových odvětvích byť stále častěji se používají oceli duplexní kombinující přednosti ocelí austenických s feritickými [3]. Při samotném svařování se nejvíce diskutuje otázka zcitlivění oceli a její náchylnost na vznik mezikrystalové koroze. Tato koroze vzniká vylučováním karbidů chrómu na hranicích zrn, čímž dojde k ochuzení sousedních oblasti o chróm. Grafické znázornění je na obr. 2. V praxi se může náchylnost na vznik mezikrystalové koroze projevit:
Vylučování karbidů Cr nastává běžně v pásmu teplot 425 až 815 °C. Na hranicích zrn začnou precipitovat karbidy typu Cr23C6 a Cr7C3 a oblasti hranice zrn ztrácí pasivační odolnost proti korozi. Z tohoto důvodu jsou materiály stabilizovány prvky Ti, Nb, Ta, které přednostně váží uhlík na karbidy TiC, NbC nebo TaC. Takové oceli se nazývají stabilizované. Druhou cestou je u ocelí a přídavných svařovacích materiálů limitovat obsah uhlíku pod 0,03 %, pak se jedná o nízkouhlíkové korozivzdorné oceli. Na obr. 3 je znázorněn svarový spoj napadený mezikrystalovou korozí. Samozřejmostí je nutnost řešit spojování a jednou z cest jak vytvořit nerozebiratelné spojení je svařování. Vždy je nutné volit přídavný svařovací materiál na základě použitého základního materiálu a pracovních podmínek samotného svařence. V tabulce I naleznete příklady korozivzorných ocelí a k nim doporučené přídavné svařovací materiály. V případě dalších dotazů týkajících se nejenom svařování korozivzdorných ocelí neváhejte kontaktovat Technický Servis ESAB VAMBERK, s. r. o. LITERATURA:
The issues of corrosion and corrosion-resistant materials
![]() ![]() ![]()
|